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In addition to ground state wave functions and energies, excited states and their energies are also obtained in
a standard Rayleigh-Ritz variational calculation. However, their accuracy is generally much lower. Using
the super-symmetric (SUSY) form of quantum mechanics, we show that better accuracy and more rapid
convergence can be obtained by taking advantage of calculations of the ground states of higher sector SUSY
Hamiltonians, followed by application of the SUSY “charge operators”. Our proof of principle study uses a
general family of one-dimensional anharmonic oscillator models. We first obtain the exact, analytic ground
states for a general family of anharmonic systems. We give the general, factorized form of the Hamiltonian
for the hierarchy that arises in SUSY theory. The “charge” operators can then be used to convert states
among the sectors. We illustrate the approach with two specific anharmonic oscillator models. Using the
ground state of the second sector Hamiltonian, we show that the corresponding excited state energies and
wave functions of the first sector are accurately obtained by applying the charge operators, using significantly
smaller basis sets than are required in a standard variational approach applied to the original Schrödinger
equation. This is a consequence of the higher accuracy of the Rayleigh-Ritz variational method when applied
for ground states.

I. Introduction

The Rayleigh-Ritz variational method is a cornerstone of
computational theoretical chemistry. However, it is well estab-
lished that it delivers much better accuracy and convergence
for ground state energies and wave functions, than for excited
states.1,2 In order to obtain similar accuracy for excited state
energies, and specifically for excited state wave functions, one
must endure a great deal of “overkill” for the ground state. It
will be a significant advance if one can introduce a computa-
tional scheme which, at least to some degree, makes the
computational effort required for excited state energies and wave
functions more comparable to that of the ground state.

The approach we use to achieve this objective makes use of
the super symmetric quantum mechanics (SUSY-QM) formula-
tion. This approach grew out of an effort to generalize the ladder
operator approach that is so powerful for the study of the
harmonic oscillator. In fact, there is a long history of using
ladder operator techniques for solving quantum mechanics
problems (e.g., the harmonic oscillator, the hydrogen atom,
angular momentum,3-10 etc). The result of a systematic study
of this approach to quantum mechanics led to the SUSY-QM
approach.11-15 In SUSY-QM, a “super-potential” is introduced,
in terms of which the Hamiltonian can be factored, resulting in
the SUSY generalization of the ladder operators (now called

“charge operators”). More important for our study is the fact
that one also obtains a hierarchy of Hamiltonians (called “sector”
Hamiltonians) having the remarkable property of being isoen-
ergetic with the spectrum of the original Hamiltonian (except
for the original ground state). Thus, the ground state of the
second sector Hamiltonian is degenerate with the first excited
state of the original Hamiltonian. Even more important, the
second sector ground state is also node-less, and there is every
reason to expect that a Rayleigh-Ritz variational calculation
of the second sector ground state energy also converges rapidly
with high accuracy. Even more remarkably, one of the SUSY
charge operators can then be used to convert the second sector
ground state into the first excited state wave function. This
should continue up the SUSY hierarchy of Hamiltonians.

The primary purpose of this paper, then, is to show that
fundamental properties of SUSY-QM can be used to compu-
tational advantage for obtaining higher accuracy and more rapid
convergence for excited state energies and wave functions, using
the Rayleigh-Ritz variational method. This paper is organized
as follows. In Section II, we present a brief introduction to
SUSY-QM. In Section III, we formulate a general treatment of
a family of anharmonic oscillators. In Section IV, we specialize
to two specific examples of anharmonic oscillator models in
order to illustrate the computational approach. In Section V we
examine these systems computationally and compare the results
of obtaining excited state wave functions and energies by
Rayleigh-Ritz calculations of the ground states of the higher
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sector SUSY Hamiltonian, with the standard, variational QM
approach to solutions for the original Hamiltonian. Finally, in
Section VI we present our conclusions.

II. Introduction to the Hierarchical Hamiltonian
Formulation of SUSY-QM

In SUSY-QM, one introduces operators that result in a
factored Hamiltonian.15 In certain cases, these correspond to
raising (or “creation”) and lowering (or “annihilation”) operators,
but in general, the charge operators transfer among sets of
isospectral eigenstates. In fact, it is possible to develop a
hierarchy of factored Hamiltonians (one for each excited bound
state of the original system). It is this aspect of SUSY-QM that
we shall take advantage of for a variational approach to
determine accurate excited state energies and wave functions.

The general starting point is to define the so-called “super-
potential”, usually denoted as W. In the theory, W is related to
the ground state wave function through the well-known Riccati
substitution:5

The relationship between the superpotential W and the
physical interaction V(x) results from assuming that eq II.1
solves the standard Schrödinger equation with energy zero. (This
does not impose any restriction since the energy can be changed
by adding any constant to the Hamiltonian.) Thus,

We easily see that

It is readily verified that the Ricatti equation for W1 is

and, if W1 is known, V1 is given by

It is then evident that

However, the Hamiltonian operator now can be factored in the
form

We define the “charge” operator

and its adjoint is then given by (assuming W1 is hermitian; i.e.,
ψ0

1 is real)

Then the “first sector” Hamiltonian is defined as

A “second sector” Hamiltonian is defined as

We note that, in principle, one might expect the ground state
of H2 to be given by

For an unbounded domain, this will not be normalizable, since
we already know that

is L2. The eigenspectra of H1 and H2 are positive semidefinite.
Let ψn

1 be an eigenstate of H1 with energy En * 0. Then it
follows that for n > 0, (since for n ) 0, E0 ) 0),

We then apply Q1 to the equation, to obtain

Thus, Q1ψn
1 is an eigenstate of H2 with the same energy, En

1, as
the state ψn

1. Similarly, consider the eigenstates of H2:

Application of Q†, then implies that Q1
†ψn

2 is an eigenstate of
H1:

ψ0
1(x) ) Ne-∫0

x
W(x')dx' (II.1)

- p
2

2m

d2ψ0
1

dx2
+ V1ψ0

1 ) 0 (II.2)

W1 ) -

dψ0
1

dx

ψ0
1

) - d
dx

ln ψ0
1 (II.3)

- p
2

2m[W1
2(x) -

dW1

dx ] + V1 ) 0 (II.4)

V1(x) ) p
2

2m(W1
2(x) -

dW1

dx ) (II.5)

-
d2ψ0

1

dx2
+ (W1

2(x) -
dW1

dx )ψ0
1 ) 0 (II.6)

- d2

dx2
+ W1

2(x) -
dW1

dx
)

[- d
dx

+ W1(x)][ d
dx

+ W1(x)]
(II.7)

Q1 ) d
dx

+ W1 (II.8)

Q1
† ) - d

dx
+ W1 (II.9)

H1 ) Q1
†Q1 (II.10)

H2 ) Q1Q1
† (II.11)

ψ0
1(x) ) Ne+∫0

x
W1(x')dx'

ψ0
1(x) ) Ne-∫0

z
W1(x')dx'

Q1
†Q1ψn

1 ) En
1ψn

1 (II.12)

Q1Q1
†(Q1ψn

1) ) En
1Q1ψn

1 (II.13)

H2ψn
2 ) Q1Q1

†ψn
2 ) En
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†Q1)(Q1

†ψn
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It follows that the Hamiltonians H1 and H2 have identical
spectra (with the exception of the ground state, since the E0

1 )
0 wave function is unique). In the case of the ground state ψ0

1,
we recall that

which shows that the quantity

cannot be used to generate the ground state of the second sector.
Indeed, eq II.16 indicates that such a ψ0

2 would vanish
identically.

Because of the uniqueness of the E0
1 ) 0 state, the indexing

of the first and second sector levels must be modified. Consider

Then

since Qψ0
1 ≡ 0

So

and we conclude that

and

then

From these expressions, it follows that

which shows again that

The source of the degeneracy of H1 and H2 is the intertwining
relation,

The next step in building a hierarchy of isospectral Hamiltonians
is to define a second superpotential, W2, according to

It is then clear that we can define an alternate form for H2, given
by

where

We observe that ψ0
2 is automatically an eigenstate of this form

for H2

since

Next, consider the first excited state eigenvalue equation for
the second sector:

We apply Q2 to eq II.34 to find

Then, by similar reasoning, we deduce that

Using the new charge operators Q2 and Q2
†, we then define

the third sector Hamiltonian,

with ground state equation

Q1
†Q1ψ0

1 ) 0 (II.16)

Q1ψ0
1 (II.17)

Q1Q1
†ψn

2 ) En
2ψn

2 (II.18)

Q1
†Q1(Q1

†ψn+1
1 ) ) En+1

1 (Q1
†ψn+1

1 ) (II.19)

En
2 ) En+1

1 (II.20)

ψn
2 )

Q1ψn+1
1

√En+1
1

(II.21)

ψn+1
1 )

Q1
†ψn

2

√En
2

(II.22)

Q1ψn+1
1 ) √En+1

1 ψn
2 (II.23)

Q1
†Q1ψn+1

1 ) √En+1
1 Q†ψn

2 (II.24)

) √En+1
1 √En

2ψn
1 (II.25)

) En+1
1 ψn

1 (II.26)

En+1
1 ) En

2 (II.27)

Q1H1 ) H2Q1 (II.28)

W2 ) - d
dx

ln ψ0
2 (II.29)

H2 ) Q2
†Q2 + E0

2 (II.30)

Q2 ) d
dx

+ W2 (II.31)

H2ψ0
2 ) E0

2ψ0
2 (II.32)

Q2ψ0
2 ≡ 0 (II.33)

H2ψ1
2 ) E1

2ψ1
2 (II.34)

(Q2Q2
† + E0

2)Q2ψ1
2 ) En

2Q2ψ1
2 (II.35)

Q2ψ1
2 ) √E1

2 - E0
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H3 ) Q2Q2
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H3ψ0
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We then observe that by applying Q2
† to eq II.38 gives

We then conclude that Q2
† satisfies the intertwining relationship

It follows that

and using eq II.37,

Thus, we conclude that

This procedure can be continued by defining the third
superpotential, W3, as

The charge operators are

and

It is then easy to express H3 in terms of the third sector charge
operators:

The first excited state equation for the third sector is then

so that

We then apply Q3 to the above equation to find

Then, the fourth sector Hamiltonian is defined as

and the ground state equation for sector four is

One deduces also the next intertwining relation

with the isospectral relation being

Clearly, the different sector wave functions result from the
application of the charge operators:

It is clear that this procedure can be continued until one
exhausts the number of bound excited states supported by H1.
We also see that determining the excited state energies and wave
functions for H1 involves solving for the ground state energies
and wave functions for each sector Hamiltonian, Hj, j > 1.

III. SUSY-QM Family of Anharmonic Oscillators

The type of system we use to give a proof of principle in
this paper is the anharmonic oscillator that is ubiquitous in
chemistry. For example, all nuclear vibrations in molecules are
anharmonic, with the effect increasing as the vibrational energy
gets closer to the dissociation limit.3 Anharmonicity also results
from the effects of rotation, through the centrifugal potential.
For the one-dimensional case, we consider an oscillator on the
domain -∞ < x < ∞. In order to have potentials that are
guaranteed to possess bound states, we shall postulate a
superpotential

Then, the corresponding sector 1 potential, V1(x), is

The “charge” operators are given by

and

[(Q2
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2)]Q2
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H4 ) Q3Q3
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3 ) √E1
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Q3
†ψ0

4 ) √E0
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W(x) ) ∑
j)0

J

djx
2j+1 (III.1)
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J
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Then, the first sector ground state for a general member of this
family is

We stress that contrary to the periodic case, the solution of
the sector two equation,

is not allowed because it is not normalizable. Thus, the ground
state for the second sector satisfies

where

However, once ψ0
2(x) is known, one can generate the first

excited state ψ1
1(x) according to

The energy, E1
1, of ψ1

1(x) is, of course, equal to E0
2.

We remark that the ground state, ψ0
1(x) is equal to the product

of the ground states for each separate term in W. Thus,

where N is the normalization constant. This is true even though
V1(x) contains cross terms of the form

In fact, even more general anharmonic oscillators can be dealt
with. Thus, any function, g(x) can be added to W(x) in eq III.1,
provided only that e-∫0

xg(x′)dx′ is L2. Thus, not only polynomic
anharmonic potentials can be treated but many others. Of course,
the resulting potential will involve added terms such as g2(x),
along with cross products of g(x) with W(x) of eq III.1, and
also (dg)/(dx).

IV. Two Example Anharmonic Oscillator Systems

We now consider two specific examples of anharmonic
oscillators. In the following section we will explore the
computational aspects of the anharmonic oscillator, using these
systems. To illustrate this approach to polynomic anharmonic
oscillation we define W(x) to be

which obviously yields a potential for the first sector of

It should be noted that x is defined on the domain -∞ < x < ∞.
We can thus define H1 as:

which satisfies the equation

and possesses an analytic ground state wave function of

To get the second Hamiltonian in the hierarchy we next define
H2 as

so

and we must solve the equation

Possessing ψ0
(2), we may develop the next Hamiltonian in the

hierarchy. To do so, we begin by expressing H2 in the following
form

where

It should be obvious that

leading to

with

Q1
† ) - d

dx
+ W1 (III.4)

ψ0
+(x) ) Nexp[-∑

j)0

J djx
2j+2

(2j + 2)] (III.5)

Q†ψ0
2(x) ) 0 (III.6)

Q1Q1
†ψ0

2(x) ) E0
2ψ0

2(x) ) E1
1ψ0

2(x) (III.7)

E1
1 * 0 (III.8)

Q1
†ψ0

2(x) ) √E0
2ψ0

1(x) (III.9)

ψ0
1(x) ) N ∏

j)0

J

edjx2j+2/(2j+2) (III.10)

djdj′x
2(j+j'+1), j * j' (III.11)

W1(x) ) x3 + 2x (IV.1)

V1(x) ) x6 + 4x4 + x2 - 2 (IV.2)

H1 ) [- d
dx

+ W1(x)][ d
dx

+ W1(x)] (IV.3)

H1ψ(x)0
(1) ) 0 (IV.4)

ψ0
(1) ) Ne-(x4/4+x2) (IV.5)

H2 ) [ d
dx

+ W1(x)][- d
dx

+ W1(x)] (IV.6)

V2 ) x6 + 4x4 + 7x2 + 2 (IV.7)

H2ψ0
(2) ) E0

(2)ψ0
(2) (IV.8)

H2 ) [- d
dx

+ W2(x)][ d
dx

+ W2(x)] + E0
(2) (IV.9)

W2(x) ) - d
dx

ln ψ0
(2) (IV.10)

Q2H2ψ1
(2) ) E1

(2)Q2ψ1
(2) (IV.11)

Q2Q2
†Q2ψ1

(2) ) (E1
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It should be noted that from this point, one can obviously
generate as many Hamiltonians as needed. It should also be
noted that the excited state wave functions can be obtained by
using the charge operators we have previously defined.

The second example results from taking

In this case,

Then,

with

and the analytical ground state is

Then the second sector Hamiltonian is

The ground state satisfies

which must be solved numerically. However, having ψ0
2, one

then obtains

and

This procedure is continued until the bound excited states of
H1 are exhausted.

V. Computational Considerations for the Anharmonic
Oscillator

We now turn to the proof of principle for this approach as a
computational scheme to obtain improved excited state energies
and wave functions in the Rayleigh-Ritz variational method.
We should note that these results can be generalized to any
system where a hierarchy of Hamiltonians can be generated
because of the nature of the Rayleigh-Ritz scheme. In the
standard approach one calculates the energies and wave func-
tions variationally, relying on the Hylleraas-Undheim theorem
for convergence.2 This, however, is unattractive for higher
energy states because they require a much larger basis to
converge to the same error. We stress that this is true
regardless of the specific basis set used. Of course, some bases
will be more efficient than others but it is generally true that
for a given basis, the Rayleigh-Ritz result is less accurate for
excited states. We address this situation by always solving for
ground states in the variational part of the problem.

To demonstrate our computational scheme, we investigate
the first example system from the previous section. For this
potential (eq IV.2), exact solutions are known for all states of
H1. We use the exact results to assess the accuracy of the
variational calculations. For our first variational calculations,
we use the harmonic oscillator basis functions where:

with each matrix element determined using

Using the hierarchy of Hamiltonians, we present the con-
verged eigenvalues in Table 1. In Table 1, all energies were
obtained for each of the Hamiltonians, H1 and H2, by standard
variational calculations using basis set sizes to achieve an
accuracy of 10-6. It is easily seen that the ground state of H2 is
degenerate with the first excited state of H1. This results from
the intertwining relations. The energies are accurate to six
significant figures. More interesting is the behavior of the excited
state wave functions. Using the Cauchy criterion to measure
convergence, we show the basis set size (N) needed in a standard
variational approach to obtain various eigenstates to the accuracy
shown in Table 2. Clearly, excited state wave functions require
substantially larger basis sets to achieve a high degree of
accuracy. In Table 3 we show the results obtained for the same

ψ0
(3) )

Q2ψ1
(2)

√E1
(2) - E0

(2)
(IV.13)

W1(x) ) x3 + x + ex (IV.14)

V1(x) ) x6 + 2x4 + 2x3ex+

2x ex + x2 + e2x - 3x2 - ex - 1
(IV.15)

H1 ) [- d
dx

+ x3 + x + ex][ d
dx

+ x3 + x + ex]
(IV.16)

H1ψ0
1 ) 0 (IV.17)

ψ0
(1) ) Ne-(x4/4+x2+ex) (IV.18)

H1 ) [ d
dx

+ x3 + x + ex][- d
dx

+ x3 + x + ex]
(IV.19)

H2ψ0
2 ) E0

2ψ0
2 (IV.20)

W2(x) ) - d
dx

ln ψ0
(2) (IV.21)

H3 ) [ d
dx

+ W2(x)][- d
dx

+ W2(x)] (IV.22)

TABLE 1: Energies for the Anharmonic Polynomic
Oscillator Using Hierarchy of Hamiltonians

n Nψ0
n H1 Nψ1

n H2

0 44ψ0
1 6.944 1187 × 10-7

34ψ0
1 5.024450

1 52ψ1
1 5.024 449 42ψ0

1 11.696825
2 62ψ2

1 11.696 820 50ψ0
1 19.497666

TABLE 2: Wave Function Errors for the Anharmonic
Polynomic Oscillator Using the Standard Variational
Method for Each Hierarchy Hamiltonian

n Nψ0
n L2 L∞

0 56ψ0
1 5.835 283 × 10-7 1.110 223 × 10-16

1 78ψ1
1 1.975 656 × 10-7 4.019 723 × 10-16

0 68ψ0
2 2.303 928 × 10-7 2.220 446 × 10-16

φn(x) ) 1

√2nn!√π
Hn(x)e-x2/2 (V.1)

∫-∞
∞

φn'(x)xj
φn(x)dx (V.2)
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excited state wave functions obtained by applying the charge
operator to the ground state wave function for H2. Again, N
denotes the basis set required, and ∆N is the reduction of basis
set achieved by use of the charge operators.

To find the solutions we used both LAPACK routines to find
these eigenvalues and vectors and GSL routines for numerical
integration. Clearly, the use of the hierarchy of Hamiltonians
and the use of charge operators provides more rapid conver-
gence. which provides us with better methods to calculate the
excited states.

We performed the same calculations and found similar results
for the second system described by W ) x3 + x + ex. Because
the excited states of this oscillator are not known analytically,
we use the Cauchy convergence criterion

where N is the basis size. This system is nontrivial since we
are not aware of any analytic solutions. In Table 4, we give the
converged energy levels (to 5 significant figures) obtained by
standard variational calculations applied to H1 and H2. In Table
5, we show the basis set sizes needed in standard variational
calculations to converge the wave functions for H1 and H2

(again, the Cauchy criterion of convergence was used.) Finally,
in Table 6, we show the results for excited states obtained using
the charge operators applied to the ground state wave functions
of H2. Again, ∆N shows the reduction in the basis size gained
by the charge operator approach.

Finally, we compared the numerical accuracy of the first
excitation energy of the anharmonic oscillator described by eq
IV.2, but now using a n -point discrete variable representation
(DVR)16 based upon the Tchebychev polynomials to compute
the eigenspectra of the first and second sectors. In Figure 1 we
show the numerical error in the first excitation energy by

comparing E1
1(n) (the first excited state energy from the standard

variational calculation with n-DVR basis functions) and E0
2(n)

(the ground state of the sector 2 Hamiltonian computed with
n-DVR basis functions) from an n point DVR to the numerically
“exact” value corresponding to a 100 point DVR,

Likewise,

For any given basis size, ε0
2 < ε1

1. Moreover, over a range of
15 < n < 40 points, the excitation energy computed using the
second sector’s ground state is between 10 and 100 times more
accurate than E1

1(n). This effectively reiterates our point that by
using the SUSY hierarchy, one can systematically improve upon
the accuracy of a given variational calculation. It also shows
that our conclusion does not depend on the basis set used.

VI. Conclusions

Although anharmonic oscillator models are useful for a wide
variety of problems in both chemistry and physics, it should be
clear that other systems should show similar behavior. The
SUSY-QM approach enabled us to develop a hierarchy of
isospectral Hamiltonians. This also led to the introduction of
charge operators that transform wave functions between the
various sectors, and the energies are always determined in a
ground state setting. Because these are most easily and ac-
curately obtained by the variational method, we realize a
significant reduction in the basis size needed to yield accurate
excited state wave functions. We then considered two specific
examples of anharmonic oscillators. We concluded that using
the SUSY hierarchy of Hamiltonians and charge operators,
provided faster convergence to the same level of accuracy and
thus, provides a better method than the standard variational
approach. In some cases, only half as many basis functions were
needed to generate the ground state wave function as were
required for the first excited state of the same sector. As a result,
the computational time for molecular models using anharmonic
potentials will be significantly reduced, without sacrificing
accuracy.

We also stress that our results do not depend on precisely
what basis set is used for the calculations. Rather we are
capitalizing on the general behavior of the Rayleigh-Ritz
variational method with regard to accuracy and convergence
rate for ground versus excited states of a given Hamiltonian.

TABLE 3: Wave Function Errors for the Anharmonic
Polynomic Oscillator Using Charge Operators to Find
Excited States

n ∆N Nψ0
n L2 L∞

1 4 74ψ1
1 4.083 823 × 10-7 2.086 041 × 10-16

TABLE 4: Energies for the Anharmonic Non-Polynomic
Oscillator Using Hierarchy of Hamiltonians, Determined
Variationally

n Nψ0
n H1 Nψ1

n H2

0 50ψ0
1 2.703 955 × 10-6

44ψ0
1 5.263075

1 60ψ1
1 5.263 075 56ψ0

1 12.109712
2 64ψ2

1 12.109 717 66ψ0
1 20.186019

TABLE 5: Errors for the Anharmonic Non-Polynomic
Oscillator Wave Functions Using Hierarchy of Hamiltonians
All Determined Variationally

n Nψ0
n L2 L∞

0 70ψ0
1 3.715 8761 × 10-7 2.220 446 × 10-16

1 88ψ1
1 6.477 328 × 10-8 1.221 245 × 10-15

0 76ψ0
2 5.659 010 × 10-7 2.109 424 × 10-15

TABLE 6: Errors for the Anharmonic Non-Polynomic
Oscillator Using Wave Functions Charge Operators to Find
Excited States by Applying the Correct Charge Operator to
the Appropriate Ground State

n ∆N Nψ0
n L2 L∞

1 14 74ψ1
1 9.750 546 × 10-7 3.181 791 × 10-16

∫-∞
∞

|Nψn - N-1ψn|2dx (V.3)

Figure 1. Convergence of first excitation energy E1
1 for model potential

V1 ) x6 + 4x4 + x2 - 2 using a n -point discrete variable representation
(DVR). Gray squares: ε ) log10|E1

1(n) - E1
1(exact)|, Black squares: ε

) log10|E0
2(n) - E1

1(exact)|. Dashed lines are linear fits.

ε1
1(n) ) log10|E1

1(n) - E1
1(exact)|

ε0
2(n) ) log10|E0

2(n) - E1
1(exact)|
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Finally, we comment that we have recently generalized the
SUSY formalism to any number of dimensions.17
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